Cyclonellin, a New Cyclic Octapeptide from the Marine Sponge Axinella carteri

Dennis J. Milanowski, ${ }^{\dagger}$ M ohammad A. Rashid, ${ }^{\ddagger, \delta}$ Kirk R. Gustafson, ${ }^{*, \dagger}$ Barry R. O’Keefe, ${ }^{\dagger}$ J oseph P. Nawrocki, ${ }^{\perp}$ Lewis K. Pannell,, , ${ }^{1}$ and Michael R. Boyd ${ }^{\nabla}$
M olecular Targets Development Program, Center for Cancer Research, National Cancer Institute, Building 1052, Room 121, Frederick, Maryland 21702-1201, Intramural Research Support Program, SAIC-Frederick, Frederick, Maryland 21702-1201, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, Bethesda, Maryland 20892-0805, and USA Cancer Research Institute, College of Medicine, University of South Alabama, 307 University Boulevard, MSB 2322, Mobile, Alabama 36688

Received J uly 31, 2003

Abstract

Cyclonellin (1), a new cydic octapeptide, was isolated from an aqueous extract of the marine sponge Axinella carteri. Its structure was elucidated by interpretation of NMR spectral data of theintact compound and N -terminal Edman sequencing of linear peptide fragments obtained by partial hydrolysis of $\mathbf{1}$. The absolute configurations of the constituent amino acids were determined by acid hydrolysis, derivitization with FDAA, and LC-MS analyses.

Marine sponges have proven to be a rich source of cyclic peptides that are diverse in both structure and bioactivity. ${ }^{1,2}$ To date, a number of proline-rich cyclic hepta- and octapeptides have been described from the genus Axinella, and many of these compounds have been reported to exhibit potent antiproliferative and cytotoxic activities. ${ }^{3-8}$ The aqueous extract of a sample of Axinella carteri Dendy (Axinellidae) collected from the Caroline Islands was selected for detailed chemical investigation on the basis of a pattern of differential cytotoxicity it exhibited in the U.S. National Cancer Institue (NCI)'s 60-cell-line antitumor screen. ${ }^{9,10}$ Our investigation of this extract led to the isolation of a new cyclic octapeptide, cyclonellin (1), along with several previously described bromopyrrole derivatives.

[^0]A 6.0 g portion of the aqueous extract from A. carteri was dissolved in $\mathrm{H}_{2} \mathrm{O}$, applied to a wide-pore C_{4} vacuum liquid chromatography column, and eluted using a step gradient with increasing concentrations of MeOH in $\mathrm{H}_{2} \mathrm{O}$. The principal cytotoxic fraction, eluted with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (2:1), contained a complex mixture of brominated pyrrole alkaloids. NMR and LC-MS analysis of this material revealed a series of known compounds including spongiacidins A and B^{11} and axinohydantoin. ${ }^{12}$ The fraction that eluted from the C_{4} column with $100 \% \mathrm{H}_{2} \mathrm{O}$ also exhibited cytotoxic activity, so a 4.1 g aliquot was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and BuOH . The resulting BuOH -soluble material (548 mg) was chromatographed on LH-20 using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (7:3), followed by gradient elution with C_{18} HPLC ($0-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$) to provide 15.3 mg of cyclonellin (1).

The positive-ion FABMS of $\mathbf{1}$ exhibited pseudomolecular ions at $\mathrm{m} / \mathrm{z} 963$ for $[\mathrm{M}+\mathrm{H}]^{+}$and $\mathrm{m} / \mathrm{z} 985$ for $[\mathrm{M}+\mathrm{Na}]^{+}$, which defined the nominal molecular weight as 962 . The molecular formula of $\mathbf{1}$ was established as $\mathrm{C}_{45} \mathrm{H}_{62} \mathrm{~N}_{12} \mathrm{O}_{12}$ by high-resolution FABMS measurements of a Csl-doped sample ($[\mathrm{M}+\mathrm{Cs}]^{+} \mathrm{m} / \mathrm{z}$ 1095.3683, calcd for $\mathrm{C}_{45} \mathrm{H}_{62} \mathrm{~N}_{12^{-}}$ $\mathrm{O}_{12} \mathrm{Cs}, 1095.3701$) in combination with detailed analyses of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data. The presence of nine carbonyl resonances ($\delta 171-175$) in the ${ }^{13} \mathrm{C}$ NMR spectrum and six secondary amide NH resonances ($\delta 7.36-8.46$) in the ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1) suggested that 1 was a peptide metabolite. Extensive 1D and 2D NMR analyses established the presence of alanine, arginine, asparagine, threonine, two proline, and two tyrosine residues. The molecular formula of 1 required 20 degrees of unsaturation, 19 of which were accounted for by the aforementioned residues; thus $\mathbf{1}$ was a cydic peptide.

The amino acid sequence and cyclic structure of $\mathbf{1}$ was deduced largely from HMBC and ROESY correlations between adjacent residues (Figure 1). Heteronuclear correlations between the $\mathrm{H}-\alpha$ protons or amide NH signals of one residue and the carbonyl carbons of adjacent residues indicated the sequence was Asn-Ala-Thr-Tyr-Pro-Tyr-ArgPro. ROESY data proved particularly hel pful for confirming

Table 1. NMR Spectral Data for Cyclonellin (1) in $\mathrm{CD}_{3} \mathrm{OH}$

	${ }^{13} \mathrm{C}^{\text {a }}$	${ }^{1} \mathrm{H}^{\text {b }}$	mult J (Hz)	$\mathrm{COSY}^{\text {c }}$	HMBC	ROESY				
Ala										
1	174.68 (s)									
2	51.27 (d)	4.25	dq (6.5, 6.5)	H-3, Ala NH	C-1, C-3, C-4	H-3, Ala NH, Asn NH				
3	16.85 (q)	1.43 , 3H	d (7.5)	H-2	C-1, C-2	H-2, Ala NH				
NH		8.46	d (5.5)	H-2	C-1, C-2, C-3	H-2, H-3, H-5, H-6				
Thr ${ }^{\text {a }}$										
4	172.12 (s)									
5	$58.96{ }^{\text {d }}$ (d)	4.88	m	H-6, Thr NH	C-4, C-6	H-6, Thr NH, Ala NH				
6	71.34 (d)	4.45	dq (4.0, 6.0)	H-5, H-7	C-7	H-7, Ala NH				
7	19.18 (q)	$1.21,3 \mathrm{H}$	d (6.5)	H-6	C-5, C-6	H-6, H-12, H-16, Thr NH				
NH		7.77	d (9.5)	H-5	C-5, C-8	H-5, H-7				
Tyr-I 772.78 (s)										
8	172.78 (s)									
9	$58.98{ }^{\text {d }}$ (s)	3.95	m	H-10a, H-10b, Tyr-I NH	C-8, C-10, C-11	H-10a, H-12, H-16,				
10	34.01 (t)	3.28	dd (4.0, 13.5)	H-9	C-9, C-12, C-16	H-9, H-12, H-16				
		3.42	dd (12.0, 12.0)	H-9	C-8, C-9, C-12, C-16	H-12, H-16				
11	130.48 (s)									
12, 16	131.07 (d)	6.98, 2H	d (8.0)	H-13, H-15	$\begin{aligned} & \text { C-10, C-12, C-16, C-13, } \\ & \text { C-14, C-15 } \end{aligned}$	$\begin{aligned} & \text { H-10a, H-10b, H-13, H-15, } \\ & \text { H-19a } \end{aligned}$				
13, 15	116.18 (d)	6.70, 2 H	d (8.5)	H-12, H-16	C-11, C-13, C-15, C-14	H-12, H-16				
14	157.15 (s)									
Pro-l 174.10 (s)										
17	174.10 (s)									
18	62.44 (s)	4.06	dd (7.5, 7.5)	H-19a, H-19b	C-17, C-19, C-20, C-22	H-19a, H-19b, Tyr-I NH				
19	30.75 (t)	1.72	m	H-18, H-20a	C-17, C-18, C-20	H-12, H-16, H-18				
		1.97	m	H-18, H-20a	C-17, C-18, C-20, C-21					
20	25.72 (t)	1.93	m	H-19a, H-21b	C-18, C-19, C-21					
		1.99	m							
21	$49.31^{\text {e }}$ (t)	3.72	m	$\begin{aligned} & \mathrm{H}-20 \mathrm{a} \\ & \mathrm{H}-20 \mathrm{a} \end{aligned}$	$\begin{aligned} & \text { C-18, C-19, C-20 } \\ & \text { C-18, C-19, C-20 } \end{aligned}$	$\begin{aligned} & \mathrm{H}-23 \\ & \mathrm{H}-23 \end{aligned}$				
		3.77	m							
Tyr-II 171.40 (s)										
22	171.40 (s)									
23	52.91 (d)	5.09	$\begin{aligned} & \text { ddd (4.0, 10.0, } \\ & 10.0) \end{aligned}$	H-24a, H-24b, Tyr-II NH	C-22, C-24, C-25, C-31	$\begin{aligned} & \text { H-21a, H-21b, H-24a, } \\ & \text { H-24b, H-26, H-30, Tyr-II } \\ & \text { NH } \\ & \text { H-23, H-26, H-30 } \end{aligned}$				
24	38.76 (t)	2.88	dd (10.0, 14.0)	H-23	$\begin{aligned} & \mathrm{C}-22, \mathrm{C}-23, \mathrm{C}-25, \mathrm{C}-26, \\ & \mathrm{C}-30 \end{aligned}$	$\begin{aligned} & \text { NH } \\ & \mathrm{H}-23, \mathrm{H}-26, \mathrm{H}-30 \end{aligned}$				
		2.92	dd (4.0, 14.0)	H-23		H-23, H-26, H-30				
25	129.14 (s)									
26, 30	131.61 (d)	6.96, 2H	d (7.0)	H-27, H-29	$\begin{aligned} & \text { C-24, C-26, C-27, C-28, } \\ & \text { C-29, C-30 } \end{aligned}$	$\begin{aligned} & \mathrm{H}-23, \mathrm{H}-24 \mathrm{a}, \mathrm{H}-24 \mathrm{~b}, \mathrm{H}-27 \text {, } \\ & \mathrm{H}-29 \end{aligned}$				
27,29	116.11 (d)	6.64, 2H	d (8.0)	H-26, H-30	C-25, C-27, C-28, C-29	$\mathrm{H}-26, \mathrm{H}-30$				
28	157.05 (s)									
NH		8.08	d (9.5)	H-23	C-23, C-31	H-23				
Arg										
31	173.68 (s)									
32	55.32 (d)	3.96	m	H-33a, H-33b, Arg NH	C-31, C-33, C-34	H-33a, H-33b, Arg NH				
33	28.98 (t)	1.35	m	H-32, H-34b	C-34	H-32				
		1.42	m	H-32	C-34	H-32				
34	26.49 (t)	1.35	m	H-35a, H-35b	C-33	H-35a, H-35b				
		1.43	m	H-33a, H-35a, H-35b	C-33	H-35a, H-35b				
35	41.68 (t)	3.03	m	H-34a, H-34b, δ NH	C-33, C-34	H-34a, H-34b, δ NH				
		3.07	m	H-34a, H-34b, δ NH	C-33, C-34	H-34a, H-34b, δ NH				
$36 \quad 158.71$ (s)										
NH		8.11	d (7.5)	H-32	C-32, C-33, C-37	H-32				
$\delta \mathrm{NH}$		7.36	t (5.5)	H-35a, H-35b	C-34, C-35, C-36	H-35a, H-35b				
Pro-ll										
37	174.60 (s)									
38	62.96 (d)	4.20	dd (6.0, 9.0)	H-39a, H-39b	C-37, C-39, C-40	$H-39 b$$H-38$				
39	30.91 (t)	1.87	m	$\mathrm{H}-38, \mathrm{H}_{2}-40$	C-37, C-38, C-40, C-41					
		2.26	m	$\mathrm{H}-38, \mathrm{H}_{2}-40$	C-37, C-38, C-40, C-41					
40	25.67 (t)	1.93, 2H	m	$\begin{aligned} & \text { H-39a, H-39b, H-41a, } \\ & \text { H-41b } \end{aligned}$	C-38, C-39, C-41	H-41a, H-41b				
41	49.09 (t)	3.72	m	$\mathrm{H}_{2}-40$	C-38, C-39, C-40	$\begin{aligned} & \mathrm{H}_{2}-40, \mathrm{H}-43 \\ & \mathrm{H}_{2}-40, \mathrm{H}-43 \end{aligned}$				
		3.98	m	$\mathrm{H}_{2}-40$	C-38, C-39, C-40					
$\begin{array}{ll}\text { Asn } \\ 42 & 173.08 \text { (s) } \\ 42\end{array}$										
43	48.56 (d)	4.95	ddd (3.5, 9.0, 12.5)	H-44a, H-44b, Asn NH	C-42, C-44		H-41a, H-41b, H-44a			
44	39.24 (t)	2.65	dd (3.0, 14.5)	H-43	C-42, C-43, C-45	$\mathrm{H}-43, \gamma \mathrm{NHb}$				
		3.21	dd (12.5, 15.0)	H-43	C-42, C-43, C-45					
45	175.09 (s)									
NH		8.73	d (9.0)	H-43	C-1	H-2, H-44b, H-43				
$\gamma \mathrm{NHa}$		7.15	bs	$\gamma \mathrm{NHb}$	C-44, C-45	$\gamma \mathrm{NHb}$				
$\gamma \mathrm{NHb}$		7.98	bs	$\gamma \mathrm{NHa}$	C-45	H-44a, γ NHa				

[^1]

Figure 1. Key HMBC (\rightarrow) and ROESY (<--->) correlations for cyclonellin (1).
the location of the proline residues. ROESY interactions were observed between the tyrosine-II H- $\alpha(\delta 5.09$) and the $\mathrm{H}_{2}-\gamma$ protons ($\delta 3.72,3.77$) assigned to prolinel and between the asparagine $\mathrm{H}-\alpha$ (δ 4.95) and the proline-ll $\mathrm{H}_{2}-\gamma$ protons ($\delta 3.72$ and 3.98). These latter correlations helped establish the final Pro-Asn peptide bond, which allowed assignment of the macrocyclic structure of $\mathbf{1}$. Mild acid hydrolysis ($1.2 \mathrm{~N} \mathrm{HCl}, 105{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$) of the cyclic peptide followed by C_{18} HPLC led to the recovery of a full length linear peptide, which resulted from cleavage of the Asn-Pro-II peptide bond, and two smaller fragments (Pro-ArgTyr and Pro-Tyr-Thr-Ala-Asn) formed by a subsequent cut at the Pro-I-Tyr-II linkage. Under these hydrolysis conditions asparagine was converted to aspartic acid, as evidenced by MS analysis and subsequent sequencing efforts. The amino acid sequence of the linear octapeptide and the two smaller peptide fragments was determined by automated N -terminal E dman degradation. These results were fully consistent with the assigned amino acid sequence of cyclonellin (1).

The absolute stereochemistry of cyclonellin was determined by complete acid hydrolysis of $\mathbf{1}$ and Marfey's analysis ${ }^{13}$ of the resulting amino acids. The acid hydrolysate was derivatized with N-(3-fluoro-4,6-dinitrophenyl)-L-alaninamide (FDAA), and then LC-MS comparison of the derivatives from $\mathbf{1}$ with the FDAA derivatives of appropriate D - and L-amino acid standards established that all of the residues in $\mathbf{1}$ had an L-configuration. Comparison of the threonine derivative obtained from 1 with FDAA derivatives of the four diastereomers of threonine confirmed the presence of L-threonine ($2 \mathrm{~S}, 3 \mathrm{R}$) in cyclonellin.

Cyclonellin (1) was evaluated in an in vitro cytotoxicity assay ${ }^{14}$ that utilized COLO-205 (colon) and OVCAR-3 (ovarian) human tumor cell lines, and it was inactive at a high test concentration of $50 \mu \mathrm{~g} / \mathrm{mL}$. This result was somewhat surprising, since cyclonellin was purified from a cytotoxic chromatography fraction that by ${ }^{1} \mathrm{H}$ NMR did not appear to have other significant constituents present. However, there have been several previous reports of naturally occurring, proline-rich cyclic peptides that were initially described as having cytotoxic activity, but subsequent synthetic samples were not cytotoxic. ${ }^{15-18}$ This apparent discrepancy has been attributed to potent trace contaminants that complexed with and co-purified with the natural peptides. In the case of cyclonellin, which is more polar than most other proline-rich cyclic peptides due to the presence of arginine, asparagine, threonine, and two tyrosine residues, the peptide was apparently separated from the other cyctotoxic constituent(s) during the final HPLC purification step. Theidentity of the cytotoxic agent
that co-chromatographed with cyclonellin throughout most of the purification process is still unknown.

Experimental Section

General Experimental Procedures. Optical rotations were measured on a Perkin-EImer 241 polarimeter. UV spectra were recorded on a Beckman DU 640 spectrophotometer. IR spectra were obtained on KBr disks in a Perkin-Elmer Spectrum 2000 FT-IR spectrometer. NMR spectra were acquired in $\mathrm{CD}_{3} \mathrm{OH}$ on a Varian INOVA spectrometer operating at 500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$, and referenced to the residual nondeuterated solvent. FABMS were recorded on a J EOL SX102 mass spectrometer using glycerol or magic bullet as matrix. Electrospray mass spectra were obtained on a Hewlett-Packard HP1100 integrated LC-MS system. HPLC was performed on a Waters 600E system with a Waters 990 DAD, monitoring at 220 nm . Amino acid sequences were determined by sequential N -terminal Edman degradation using an Applied Biosystems model 494 sequencer according to the protocols of the manufacturer.

Sponge Material. Samples of the marine sponge Axinella carteri were collected by P. L. Colin (Coral Reef Research Foundation) off Chuuk, Micronesia. The sponge material was frozen shortly after collection and maintai ned frozen prior to extraction. A voucher specimen for this collection (OCDN 1635) is maintained at the Smithsonian Institution, Washington, D.C.

Extraction and Isolation. The frozen samples were ground into a coarse powder (248 g) and extracted with $\mathrm{H}_{2} \mathrm{O}$ to yield 41.7 g of crude extract after lyophilization. A 6.0 g portion of the crude aqueous extract was dissolved in $\mathrm{H}_{2} \mathrm{O}$, applied to a wide-pore C_{4} column ($5 \times 8 \mathrm{~cm}$), and sequentially eluted with $\mathrm{H}_{2} \mathrm{O}(100 \%), \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (2:1), $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (1: 2), and MeOH (100%) under vacuum. A 4.1 g aliquot of the $100 \% \mathrm{H}_{2} \mathrm{O}$ fraction was taken up in 300 mL of $\mathrm{H}_{2} \mathrm{O}$ and partitioned with $3 \times 300 \mathrm{~mL}$ of BuOH , and the resulting BuOH layers were combined and dried (548 mg). The BuOH fraction was purified by gel permeation chromatography on Sephadex LH-20 ($3 \times 100 \mathrm{~cm}$) eluting with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(7: 3)$, fol lowed by C_{18} HPLC (Dynamax, $8 \mu \mathrm{~m}$ particle size, $1 \times 25 \mathrm{~cm}$) employing a linear gradient from 0 to $60 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ (0.1% TFA) over $30 \mathrm{~min}(3 \mathrm{~mL} / \mathrm{min}$) to yield compound $\mathbf{1}$ (15.3 mg , $\left.t_{R} 20.3 \mathrm{~min}\right)$.

Cyclonellin (1): amorphous white solid; $[\alpha]_{D}-92.8^{\circ}$ (c 0.25 , $\mathrm{MeOH})$; UV (EtOH) $\lambda_{\text {max }}(\log \epsilon) 218$ (4.44), 276 (3.88) nm; IR (film, KBr) $\nu_{\text {max }} 3278,1668,1516,1450,1203,1133 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, seeTable 1; FABMS, positive ion, $\mathrm{m} / \mathrm{z} 963.5$ [M + H] ${ }^{+}$, m/z 985.5 [M + Na] ${ }^{+}$; HRFABMS, CsI-doped sample, $\mathrm{m} / \mathrm{z} 1095.3683$ [M + Cs] ${ }^{+}$, calcd for $\mathrm{C}_{45} \mathrm{H}_{62} \mathrm{~N}_{12} \mathrm{O}_{12} \mathrm{Cs}$, 1095.3701 ($\Delta-1.8 \mathrm{mmu}$).

Acid Hydrolysis and LC-MS Analysis of FDAA Derivitives. ${ }^{13}$ The peptide ($100 \mu \mathrm{~g}$) was dissolved in 6 N HCl (constant boiling, 0.5 mL), degassed, and heated at 105-108 ${ }^{\circ} \mathrm{C}$ for 16 h under vacuum. The solvent was removed in vacuo, and the residue washed with $\mathrm{H}_{2} \mathrm{O}$ and dried in vacuo to give the hydrolysis product. The hydrolysis product ($50 \mu \mathrm{~g}$) was dissolved in $15 \mu \mathrm{~L}$ of 6% TEA (in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}, 1: 1$) and treated with $7.5 \mu \mathrm{~L}$ of $1 \% \mathrm{~N}$-(3-fluoro-4,6-dinitrophenyl)-L-alaninamide (FDAA) in acetone at $40^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was diluted with $45 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$ and an aliquot applied to a C_{8} column (Zorbax 300SB, $2.1 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$) eluting with a linear gradient ($0-50 \%$) of MeCN in $5 \% \mathrm{MeCO}_{2} \mathrm{H}$ over 30 min $\left(0.25 \mathrm{~mL} / \mathrm{min}, 50^{\circ} \mathrm{C}\right.$). FDAA-derivitized amino acids were detected by absorption at 340 nm and by MSD (positive ion, mass range $100-1000 \mathrm{Da}$) and compared with similarly derivatized commercially available amino acid standards. Amino acid standards with retention times (min) shown in parentheses: L-Ala (18.03), d-Ala (21.10), L-Arg (13.48), D-Arg (15.63), L-Asp (14.29), d-Asp (16.97), L-Pro (18.91), D-Pro (20.22), L-Thr (13.80), L-allo-Thr (14.86), d-Thr (18.82), d-alloThr (16.84), L-Tyr (21.83), d-Tyr (23.81). The amino acids observed and retention times (min) for the FDAA derivitives of the hydrolysate of 1: L-Ala (18.00), L-Arg (13.17), L-Asp
(14.24, Asn is converted to Asp during acid hydrol ysis), L-Pro (18.90), L-Thr (13.54), L-Tyr (21.83).

Partial Hydrolysis of 1, LC-MS, and Edman Sequencing. The peptide (0.1 mg) was dissolved in $200 \mu \mathrm{~L}$ of 1.2 N HCl and heated at $105^{\circ} \mathrm{C}$ for 1 h . The solution was then diluted with $600 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$ and stored frozen ($-20^{\circ} \mathrm{C}$) prior to analysis. The hydrolysate ($50 \mu \mathrm{~L}$) was chromatographed in dupicate by linear gradient C_{18} HPLC (Dynamax, 4.6×250 $\mathrm{mm}, 8 \mu \mathrm{~m}$) employing $0-50 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ (0.1% TFA) over $30 \mathrm{~min}(1.5 \mathrm{~mL} / \mathrm{min})$. Individual peaks were col lected from the first run and chromatographed by LC-MS to identify the linear peptide fragments: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 566.2$, appropriate for Pro-Tyr-Thr-Ala-Asp(Asn), $\mathrm{t}_{\mathrm{R}}=13.1 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 435.2$, Pro-Arg-Tyr, $\mathrm{t}_{\mathrm{R}}=15.8 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 982$, Pro-Arg-Tyr-Pro-Tyr-Thr-Ala-Asp(Asn), $t_{R}=16.2 \mathrm{~min}$. The HPLC peaks corresponding to the full linear peptide and the two peptide fragments were collected in the second HPLC run and subsequently analyzed by N -terminal Edman degradation on a gas phase automated amino acid sequencer.

Cytotoxicity Evaluations. Chromatography fractions and purified compounds were dissolved in DMSO- $\mathrm{H}_{2} \mathrm{O}$ (1:1) and assayed in an in vitro cytotoxicity assay against colon (COLO205) and ovarian (OVCAR-3) human tumor cell lines. Experimental details of the assay have been published elsewhere. ${ }^{14}$

Acknowledgment. We thank D. Newman (NPB) for coordinating collections, L. Bell Colin (CRRF) for collection and sample data, T. McCloud for extractions, and T. J ohnson and J. Wilson for cytotoxicity evaluations. This project was supported by NCI contract No. N01-C0-12400. The content of this publication does not necessarily reflect the views or policies of the department of Health and Human Services, nor does mention of trade names, commercial products, or organization imply endorsement by the U.S. government.

References and Notes

(1) Blunt, J . W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Princep, M. R. Nat. Prod. Rep. 2003, 20, 1-48, and previous reports by D. J. Faulkner in this series.
(2) Fusetani, N.; Matsunaga, S. Chem Rev. 1993, 93, 1793-1806.
(3) Napolitano, A.; Bruno, I.; Rovero, P.; Lucas, R.; Peris, M. P.; GomezPaloma, L.; Riccio, R. Tetrahedron 2001, 57, 6249-6255.
(4) Pettit, G. R.; Herald, C. L.; Boyd, M. R.; Leet, J . E.; Dufresne, C.; Doubek, D. L.; Schmidt, J. M.; Cerny, R. L.; Hooper, J . N. A.; Rutzler, K. C. J. Med. Chem. 1991, 34, 3339-3340.
(5) Pettit, G. R.; Gao, F.; Cerny, R. Heterocycles 1993, 35, 711-718.
(6) Pettit, G. R.; Gao, F.; Cerny, R. L.; Doubek, D. L.; Tackett, L. P.; Schmidt, J. M.; Chapuis, J. J. Med. Chem. 1994, 37, 1165-1168.
(7) Pettit, G. R.; Gao, F.; Schmidt, J . M.; Chapuis, J. Cerny, R. L. Bioorg. Med. Chem. Lett. 1994, 4, 2935-2940.
(8) Randazzo, A.; Dal Piaz, F.; Orrù, S.; Debitus, C.; Roussakis, C.; Pucci, P.; Gomez-Paloma, L. Eur. J. Org. Chem. 1998, 2659-2665.
(9) Boyd, M. R. Current Therapy in Oncol ogy; Niederhuber, J . E., Decker, B. C., Eds.; Inc.: Philadelphia, 1993; pp 11-12.
(10) Boyd, M. R. Drug Dev. Res. 1995, 34, 91-109.
(11) Inaba, K.; Hiroyasu, H.; Tsuda, M.; K obayashi, J . J . Nat Prod. 1998, 61, 693-695.
(12) Pettit, G. R.; Herald, C. L.; Leet, J . E.; Gupta, R.; Schaufelberger, D. E.; Bates, R. B.; Clewlow, P. J.; Doubek, D. L.; Manfredi, K. P.; Rutzler, K.; Schmidt, J. M.; Tackett, L. P.; Ward, F. B.; Bruck, M.; Camou, F. Can. J. Chem. 1990, 68, 1621-1624.
(13) Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596.
(14) Bokesch, H. R.; Blunt, J. W.; Westergaard, C. K.; Cardellina, J . H., II; J ohnson, T. R.; Michael, J. A.; McKee, T. C.; Hollingshead, M. G.; Boyd, M. R. J. Nat. Prod. 1999, 62, 633-635.
(15) Bates, R. B.; Caldera, S.; Ruane, M. D. J. Nat. Prod. 1998, 61, 405.
(16) Pettit, G. R.; Rhodes, M. R.; Tan, R. J. Nat. Prod. 1999, 62, 409414.
(17) Pettit, G. R.; Toki, B. E.; Xu, J. P.; Brune, D. C. J. Nat. Prod. 2000, 63, 22-28.
(18) Pettit, G. R.; Lippert, J. W., III; Taylor, S. R.; Tan, R.; Williams, M. D. J. Nat. Prod. 2001, 64, 883-891.

NP030336X

[^0]: * Corresponding author. Tel: 1+301-846-5391. Fax: 1+301-846-6919. E-mail: manuscripts@mail.ncifcrf.gov.
 ${ }^{+}$Molecular Targets Development Program, CCR, NCI.
 \# SAIC-Frederick.
 § On leave from the Department of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh.
 ${ }^{\perp}$ Laboratory of Bioorganic Chemistry, NIDDK.
 " Present address: USA Cancer Research Institute.
 ${ }^{\nabla}$ USA Cancer Research Institute.

[^1]: a Multiplicities determined using the DEPT pulse sequence. ${ }^{\text {b }}$ With geminal protons, the smaller δ-value is given the 'a' designation,
 assigned from HSQC data.

